Finding the Smallest Eigenvalue by Properties of Semidefinite Matrices

نویسنده

  • M. Shams Solary
چکیده

We consider the smallest eigenvalue problem for symmetric or Hermitian matrices by properties of semidefinite matrices. The work is based on a floating-point Cholesky decomposition and takes into account all possible computational and rounding errors. A computational test is given to verify that a given symmetric or Hermitian matrix is not positive semidefinite, so it has at least one negative eigenvalue. This criterion helps us to find the smallest eigenvalue and singular value. Computational examples show that these results can be quite accurate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Properties of eigenvalue function

For the eigenvalue function on symmetric matrices, we have gathered a number of it’s properties.We show that this map has the properties of continuity, strict continuity, directional differentiability, Frechet differentiability, continuous  differentiability. Eigenvalue function will be extended to a larger set of matrices and then the listed properties will prove again.

متن کامل

Restoring Definiteness via Shrinking, with an Application to Correlation Matrices with a Fixed Block

Indefinite approximations of positive semidefinite matrices arise in many data analysis applications involving covariance matrices and correlation matrices. We propose a method for restoring positive semidefiniteness of an indefinite matrix M0 that constructs a convex linear combination S(α) = αM1 + (1− α)M0 of M0 and a positive semidefinite target matrix M1. In statistics, this construction fo...

متن کامل

Semidefinite approximations for quadratic programs over orthogonal matrices

Finding global optimum of a non-convex quadratic function is in general a very difficult task even when the feasible set is a polyhedron. We show that when the feasible set of a quadratic problem consists of orthogonal matrices from Rn×k, then we can transform it into a semidefinite program in matrices of order kn which has the same optimal value. This opens new possibilities to get good lower ...

متن کامل

Large deviations of the smallest eigenvalue of the Wishart-Laguerre ensemble.

We consider the large deviations of the smallest eigenvalue of the Wishart-Laguerre Ensemble. Using the Coulomb gas picture we obtain rate functions for the large fluctuations to the left and the right of the hard edge. Our results are compared with known exact results for β=1 finding good agreement. We also consider the case of almost square matrices finding new universal rate functions descri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Reliable Computing

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2013